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Abstract: As a function of the spatial position of the optical coherence tomography 
(OCT) image, retinal layer thickness is an important diagnostic indicator for many retinal 
diseases. Reliable segmentation of the retinal layer is necessary for extracting useful 
clinical information. However, manual segmentation of these layers is time-consuming 
and prone to bias. Furthermore, due to speckle noise, low image contrast, retinal 
detachment, and also irregular morphological features make the automatic segmentation 
task challenging. To alleviate these challenges, in this paper, we propose a new coarse-
fine framework combining the full convolutional network (FCN) with a multiphase level 
set (named FCN-MLS) for automatic segmentation of nine boundaries in retinal spectral 
OCT images. In the coarse stage, FCN is used to learn the characteristics of specific 
retinal layer boundaries and achieve classification of four retinal layers. The boundaries 
are then extracted and the remaining boundaries are initialized based on a priori 
information about the thickness of the retinal layer. In order to prevent the overlapping of 
the segmentation interfaces, a regional restriction technique is used in the multi-phase 
level to evolve the boundaries to achieve fine nine retinal layers segmentation. 
Experimental results on 1280 B-scans show that the proposed method can segment nine 
retinal boundaries accurately. Compared with the manual delineation, the overall mean 
absolute boundary location difference and the overall mean absolute thickness difference 
were 5.88 ± 2.38μm and 5.81 ± 2.19μm, which showed a good consistency with manual 
segmentation by the physicians. Our experimental results also outperform state-of-the-art 
methods. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Spectral domain optical coherence tomography (SD-OCT) [1] technique is of great value 
in the evaluation of retinal sections in vivo. Accurate detection and segmentation of 
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retinal structures in SD-OCT is crucial for diagnosis, prediction and monitoring of retinal 
diseases. Central serous chorioretinopathy (CSC) is the fourth most common retinopathy 
following age-related macular degeneration, diabetic retinopathy, and branch retinal vein 
occlusion. Impaired retinal pigment epithelial (RPE) barrier function leads to serous RPE 
and/or Neuroretinal detachment. On the OCT images, the main manifestations are the 
arches of the boundary of myoid and ellipsoid of inner segments (BMEIS). The arched 
area is the CSC lesion area (see Fig. 1(b)). Figure 1(a) shows a B-scan of normal retinal 
OCT image. Most of the patients are young adults. The patient's mild vision decreased. 
The visual object deformed, became smaller, and accompanied by color vision changes. 
Dark spots appear in the center of the field of view. The patient's hyperopic refractive 
also changes due to serous detachment in the macular area. The disease is easy to relapse, 
repeated many times Can cause irreversible damage to visual function. So, it is important 
to clearly identify the CSC boundaries, which can help doctors diagnose, predict, and 
monitor central serous chorioretinopathy. Whereas, manual segmentation of OCT retinal 
layers is tedious, time consuming and often irreproducible. Therefore, many computer-
aided segmentation methods were developed. 

However, automatic segmentation of retinal layers is challenging due to the following 
two reasons. (1) Local contrast between boundaries of different retinal layers is low (see 
Fig. 1). (2) Retinal layers always have irregular morphological features (see Fig. 1). 

 

  
Fig. 1. B-scans of OCT retina. (a) A B-scan of OCT normal retina. (b) A B-scan of OCT 
retina with CSC. 

ILM: inner limiting membrane; RNFL: retinal nerve fiber layer; GCL: ganglion cell 
layer; IPL: inner plexiform layer; INL: inner nuclear layer; OPL: outer plexiform layer; 
ONL: outer nuclear layer; BMEIS: Boundary of myoid and ellipsoid of inner segments; 
IB-OPR: the lower boundary related to CSC; OB-RPE: outer boundary of retinal 
pigment epithelium; CL1: the layer between BMEIS and IB-OPR; CL2: the layer 
between IB-OPR and OB-RPE; 

The left-side of each figure corresponds to the retinal layer boundaries: 1. ILM; 2. 
RNFL- GCL ;3. GCL- IPL; 4.IPL -INL; 5. INL -OPL; 6. OPL-HFL; 7. BMEIS; 8. IB-
OPR; 9. OB-RPE. 

The right-side of each figure corresponds to the retina layers: vitreous; RNFL; GCL; 
IPL; INL; OPL; ONL; CL1; CL2; choroid. 

Generally, the existing retinal layer segmentation algorithms can be divided into two 
categories: fixed mathematical model-based methods [2–13] and machine learning-based 
methods [14–19]. 

As the fixed mathematical model-based methods, Mayer et al. [2] presented a method 
to determine the RNFL layer thickness in OCT images based on anisotropic noise 
suppression and deformable splines. Mujat et al. [3] presented a retinal nerve fiber layer 
segmentation algorithm for frequency domain data that can be applied on scans from both 
normal healthy subjects and glaucoma patients. Farsiu et al. [4] presented an automatic 
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method for detection and segmentation of drusen in retinal images captured via high 
speed SD-OCT systems. Niu et al. [5] presented an automated algorithm to segment GA 
regions in SD-OCT images. These active contour-based methods effectively solve the 
problem of topological changes in the retinal structure, but they rely on initialization and 
require strong prior information of the retinal image layer and thickness. Chiu et al. [6] 
presented an automatic approach for segmenting seven retinal layers in SD-OCT images 
using graph theory and dynamic programming. Chiu et al. [7] presented a generalized 
framework for segmenting closed-contour anatomical and pathological features using 
graph theory and dynamic programming. LaRocca et al. [8] presented an automatic 
approach for segmenting corneal layer boundaries in SD-OCT images using graph theory 
and dynamic programming. Quellec et al. [9] presented an automated method for 
segmenting 3D fluid and fluid-associated abnormalities in the retina, from 3D OCT 
retinal images of subjects suffering from exudative age-related macular degeneration. 
Keller et al. [10] introduced a metric in graph search and demonstrated its application for 
segmenting retinal OCT images of macular pathology. Tian et al. [11] presented an 
automatic OCT retinal image analysis algorithm to segment OCT volume data in the 
macular region accurately. Srinivasan et al. [12] presented an automatic approach for 
segmenting retinal layers in SD-OCT images using sparsity based denoising, support 
vector machines, graph theory, and dynamic programming. Karri et al. [13] presented an 
algorithm for layer-specific edge detection in retinal OCT images through a structured 
learning algorithm that could simultaneously identifies individual layers and their 
corresponding edges. However, these methods of graph-based surface segmentation and 
contour modeling require professionally designed, application-specific transformations, 
including cost functions, constraints, and model parameters. 

As the machine learning-based methods (i.e., support vector machines, neural 
networks, random forest and so on) are trained to extract features from each layer or its 
boundaries for determining layer boundaries [14,15]. In Lang et al. [14], authors built a 
random forest classifier to segment eight retinal layers in macular cube images acquired 
by OCT. The random forest classifier learns the boundary pixels between layers, 
producing an accurate probability map for each boundary, which is then processed to 
finalize the boundaries. In McDonough et al. [15], authors proposed a method by which 
the boundaries of retinal layers in OCT images can be identified from a simple initial user 
input. The proposed method is trained to identify points within each layer, from which, 
the boundaries between the retinal layers are estimated. This method focuses on training 
neural networks to identify layers themselves, instead of boundaries. With the 
development of deep learning methods, deep neural network [16–18] is considered to be a 
very powerful tool in the field of computer vision. The implementation of deep learning 
methods slowly matured from the convolutional neural network (CNN) proposed by 
Krizhevsky et al. [19]. It automatically learns a series of increasingly complex features 
and related classifiers directly from the training data. In recent years, CNN based 
methods have been proposed as an alternative to traditional machine learning for normal 
and pathological classification of OCT images. Fang et al. [20] proposed a new 
convolutional neural network and graph-based search method for automatically 
segmenting nine-layer boundaries on non-exudative AMD OCT images. This was the 
first CNN to segment the inner layer of the retina. Shah et al. [21] presented a method for 
performing multiple surface segmentation using CNNs and applied it to retinal layer 
segmentation in normal and intermediate AMD OCT scans at the B-scan level in a single 
pass. Apostolopoulos et al. [22] proposed a fully convolutional neural network 
architecture which combines dilated residual blocks in an asymmetric U-shape 
configuration, and can segment multiple layers of highly pathological eyes in one shot. 
And demonstrated the effectiveness of data on patients with advanced AMD. Ben-Cohen 
et al. [23] explored a U-Net-based full convolution model, training the network to 
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segment different layers, extracting probability maps of different layers from each test 
case, and then using Sobel edge filter along with graph search methods to detect each 
layers boundary. Roy et al. [24] proposed a new fully convolutional deep architecture 
(ReLayNet) for semantic segmentation of retinal OCT B-scan into 7 retinal layers and 
fluid masses, and substantiated its effectiveness on a publicly available benchmark. 
Although these frames proved to be effective, they are dependent on the availability of 
large annotated data sets. 

Some of the successful applications of level set algorithms, such as Yazdanpanah et 
al. [25] presented a semiautomated segmentation algorithm to detect intra-retinal layers in 
OCT images acquired from rodent models of retinal degeneration. A multi-phase 
framework with a circular shape prior is adopted to model the boundaries of retinal layers 
and estimate the shape parameters using least squares. A contextual scheme is also 
employed to balance the weight of different terms in the energy function. Novosel et al. 
[26] presented a segmentation method that operated on attenuation coefficients and 
incorporated anatomical knowledge about the retina. Then, the layers in the retina are 
simultaneously segmented via a new flexible coupling approach. Novosel et al. [27] 
presented an approach to jointly segment retinal layers and lesions in eyes with topology-
disrupting retinal diseases by a loosely coupled level sets framework. 

The priori information of the middle boundaries of the retinal layer is clear, and the 
relative positional relationship between these boundaries is minimally affected by 
retinopathy. Therefore, the prior knowledge can be well used as the initialization of the 
level set function, which can alleviate the main disadvantage of the level set algorithm 
that it is relies on initialization and make sure the perfectly combining between the level 
set algorithm and the deep learning network. Inspired by knowledge above, we proposed 
a new segmentation model of retinal layers with CSC of SD-OCT images. The 
combination of FCN model and multilevel level set method (named FCN-MLS) can 
produce semantic accurate prediction and detailed segmentation mapping with a certain 
computational efficiency. We first decompose the trained OCT image into blocks, which 
are divided into five classes. The FCN is adopted to automatically extract features 
centered on the retinal layer boundaries and to train the soft-max layer to divide the five 
boundaries. The initialization of the remaining boundaries is based on prior information 
about the thickness of the retinal layer. Finally, we use a multi-stage level set model to 
segment and evolve to the final boundaries to be segmented. In summary, there are two 
main contributions of our work: 

(1) The multi-stage level set model is combined with FCN network to implement the 
coarse-fine segmentations of nine retinal layers simultaneously. 

(2) To alleviate problems caused by low contrast and layer boundary blur, regional 
restriction is employed to avoid the overlap of the segmentation interface and 
obtain accurate segmentation of retinal layers. 

In the following, we will first introduce the deep-learning-based model for OCT 
images segmentation, and then, two evaluation metrics, i.e., mean absolute boundary 
location difference (mabld) and mean absolute thickness difference (matd) are employed 
to evaluate experimental results of OCT images in normal and central serous retinopathy. 

2. Method 

The proposed framework can be split into three stages: Pre-processing, FCN for layer 
boundary classification and distance regularization level set (DRLSE) algorithm for layer 
segmentation. The flowchart of the proposed method is illustrated in Fig. 2. 
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Fig. 2. Flowchart of the proposed method. 

2.1 Pre-processing 

In practical applications, due to the high scattering of biological tissues, the image quality 
in OCT is greatly affected by speckle noise, and speckle noise can blur the image details 
and reduce image clarity. In order to preserve more boundary information after denoising 
the retina image, we use an improved anisotropic double-sided filter proposed by Tomasi 
et al. [28] to denoise the image with 2σ =  and Half-size = 4. 

2.2 Coarse layer boundary classification by FCN 

FCN proposed by Long et al. [29] transforms the full connection layer of CNN into the 
convolution layer and add deconvolution layer after the last convolution layer to restore 
the original image size. The category of each pixel is calculated through the soft-max 
layer. The output of FCN has same size with original image 

We adopted the network structure of FCN-8s proposed by Long et al. [29] based on 
VGG-16 proposed by Yu et al. [30] to segment retinal layers coarsely. The model 
consists of 13 convolutional layers, 5 pooling layers, ReLU layers proposed by Nair et al. 
[31] and 3 fully connection layers with according deconvolution layers. Cross-Entropy 
loss function is adopted in FCN networks. The basic formula is:   

 ( ) ( ) ( )log , , ,
,

logi j l i j l i j
i j

L x y x p xω= −  (1) 

where ω is the weight assigned to the pixel ,i jx of OCT images, and yl is the true 

classification of the pixel ,i jx , if ,i jx belongs to l, then yl is equal to 1. Otherwise, yl is 

equal to 0; pl is the probability; i , j  is the size of the image. 

2.3 Fine layer segmentation by level set functions with regional restriction 

2.3.1 Layer segmentation by level set functions 

The initialization of level set function ( )z ,x yφ=  [32,33] is based on the classification 

results of FCN network. Five boundaries with gradient information changed significantly 
are selected as zero level ( )0φ = of the level set function, which is the target contour of 

segmentation. Positive level ( )0φ >  contains the upper parts of retinal layers. Below the 

boundary is the negative level ( )0φ <  (see Fig. 3, Fig. 4). On the right of Fig. 3 and Fig. 

4 is the projection of the level set function on a two-dimensional plane. Then, based on 
the priori information of the thickness of the retinal image layer in OCT, the remaining 
four boundaries are initialized. 
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Fig. 3. Schematic diagram of level set function initialization and its projection in a two-
dimensional plane. 

 

Fig. 4. Schematic diagram of the proposed level set function initialization and its 
projection in a two-dimensional plane. (The blue area represents the positive horizontal 
level of the level set function and the red area represents the negative level of the level set 
function.) 

In the evolution of level set function, an edge based geometric active contour model is 
adopted to obtain the segmentation of remaining boundaries. The energy function is 
defined as: 

 ( ) ( ) ( ) ( )R L Sε φ μ φ α φ β φ= + +  (2) 

 ( ) ( )L g dxφ δ φ φ
Ω

= Δ ∇  (3) 
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where α > 0 and Rβ∈ are the coefficients of the energy functions ( )L φ and ( )S φ . g is the 

edge indicator function defined in Eq. (5). I is an image on a domain Ω . Gσ is a 

Gaussian kernel with a standard deviation α . The Dirac delta function δ  and Heaviside 
function H  in L  and S  are approximated by the following smooth functions δ  (Eq. (6)) 
and H  (Eq. (7)) as in many level set methods. Note that δ  is the derivative of H ,i.e.,

H ′ = δ .The parameter ε is usually set to 1.5. The algorithm aims at minimizing the 
energy function (Eq. (2)). In the evolution process, ( )L φ computes the line integral of the 

function g along the zero level contour of φ  through the Dirac delta function δ . By 

parameterizing the zero level set of φ  as a contour C : [0,1] → Ω , ( )L φ  can be expressed 

as a line integral ( )( ) ( )1 '

0
s sg C C ds . ( )L φ is minimized when the zero-level contour of 

φ  is located at the retinal layer boundaries. In the evolution of the level set, ( )S φ

computes a weighted area of the region }{ 0−
φΩ = Δ η : φ(η) < , which is introduced to 

accelerate the motion of the zero-level contour, especially when the initial contour is far 
from the target boundary. Specifically, if the initial contour is below retinal layer, the 
coefficients in the weighted area term should be positive, thus making the zero-level 
contour move upward during the evolution of the level set. If the initial contour is above 
retinal layer, the coefficient β should be negative to drive the contour downward motion. 

When the zero-level contour reaches the boundary of retinal layer, the value of g is 1. 

2.3.2 Regional restriction 

Because the gradient information of the middle retinal layer interface is not obvious, the 
optimal solution obtained by the evolution of multiple level set functions may be 
overlapped. Therefore, in order to avoid the overlapping of interfaces, we adopt the idea 
of regional restriction coupling (see Fig. 5), so that the evolution region of each level set 
function is not lower than the minimum value of the upper boundary of the interface to be 
segmented, and not higher than the maximum value of the lower boundary of the 
interface to be segmented at the same time. With the continuous evolution of the level set 
function of the upper and lower interfaces, the evolving region of the interface to be 
segmented is updated in real time. 

 

Fig. 5. Principle of regional restriction. 

3. Experimental results and analysis 

The MATLAB language MatConvNet toolkit is adopted to implement FCN model. The 
CPU used for Intel (R) Core i7-4980HQ 2.80GHz. GPU is NVIDIA GeForce GTX 
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980M. Hyperparameters during the training phase are set as: a total of 50 epochs, the 
batch-size is 10 and the initial learning rate is 0.0001. 10 SD-OCT data are selected as 
experimental subjects, which including 5 abnormal eyes with CSC (640 B-scans) and 5 
normal eyes (640 B-scans). A data set in total of 1280 B-scan images is built. All of the 
cubes were obtained using a Cirrus SD-OCT device (Carl Zeiss Meditec, Inc., Dublin, 
CA). Each SD-OCT cube contained 1280 contiguous 512 × 1024 pixels B-scan images. 
Manual segmentation of retinal boundaries by an experienced grader is deemed as 
ground-truth. 860 B-scans were randomly selected as the neural network training set, 360 
B-scans were randomly selected as the validation set of the neural network, the remaining 
60 B-scans were used as the neural network test set. Figure 6 shows an example of 
classification by FCN and the corresponding extracted boundaries. Class 0 represents the 
background, Class 1 represents the ILM layer, Class 2 represents the area between 
RNFL-GCL and BMEIS; Class 3 represents the CSC lesion area, and Class 4 represents 
the CL2 layer between IB-OPR and OB- RPE, a total of 5 classes (see Fig. 6(a)). The five 
boundaries extracted include ILM, RNFL-GCL, BMEIS, IB-OPR, OB-RPE (see Fig. 
6(b)). The initialization of the remaining boundaries, including GCL-IPL, IPL-INL, INL-
OPL, OPL-HFL (see Fig. 6(c)). 

 

Fig. 6. Automatic surface detection. (a)layer classification through FCN; (b) Initialization 
interface; (c) Remainder layer initialization based on retinal layer thickness. 

3.1 Quantitative evaluation 

In order to quantitatively evaluate the performance of the proposed method, we compared 
our segmentation results with FCN-based method proposed by Longet et al. [29], graph-
based segmentation proposed by Chiu et al. [6], OCT Explorer [34,35] and ReLayNet 
proposed by Roy et al. [24]. Results show that the similarity with manual delineations is 
higher by our proposed method than others. 

3.1.1. Evaluation of the layer boundary position 

We use the mean absolute boundary difference(mabd) metric proposed by Niu et al. [36] 
to estimate the boundaries difference between the segmentation methods, which can be 
defined as: 

 1
1 2

1

1 1

512

N
i

b b
i

mabd C C
N =

= −   (8) 

where N is the width of each B-Scans, the 1
i
bC and 2

i
bC are defined as the corresponding 

coordinate value of the segmentation result from the same boundary i-th  in the axial 
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direction of B-scan of the manual segmentation method and the method to be compared, 
respectively. 

The standard deviation values (SD) could be expressed as: 

 1 2
1

1 1

512

N
i i
b b

i

sd C C mabd
N =

 = − − 
 

   (9) 

We performed comparisons on 4 normal SD-OCT cubes and 5 SD-OCT cubes with 
CSC lesions. The results of the mean absolute boundary position difference and standard 
deviation values are shown in Tables 1 and Tables 2, respectively. 

Table 1. Mean absolute boundary positioning differences (mean ± SD) calculated 
from the abnormal images with CSC in micrometers. 

Boundary 
OCT-Explorer 

[34,35] vs. 
Manual 

Chiu et al. [6] 
vs. Manual 

Long et al. 
[29] vs. 
Manual 

Roy et al. [24] 
vs. Manual 

Prosed FCN-
MLS vs. 
Manual 

ILM 4.14 ± 0.78 3.35 ± 0.58 2.81 ± 0.52 3.04 ± 0.27 2.79 ± 0.50 

RNFL-GCL 26.58 ± 23.19 10.61 ± 9.76 9.72 ± 3.63 6.37 ± 2.79 4.91 ± 2.54 

GCL-IPL 33.71 ± 26.34 —- 13.27 ± 4.39 9.14 ± 3.85 8.54 ± 1.72 

IPL-INL 29.37 ± 26.45 17.09 ± 13.95 8.41 ± 2.79 6.35 ± 2.38 6.34 ± 1.66 

INL-OPL 31.09 ± 28.74 19.35 ± 16.77 7.58 ± 2.31 7.62 ± 3.01 7.00 ± 1.70 

OPL-HFL 32.58 ± 25.56 20.60 ± 17.35 8.63 ± 4.39 7.59 ± 3.84 7.33 ± 2.65 

BMEIS 53.63 ± 52.04 64.03 ± 55.20 4.64 ± 2.37 4.65 ± 2.44 4.59 ± 2.82 

IB-OPR 23.57 ± 6.58 — 5.79 ± 4.93 5.43 ± 3.87 5.37 ± 4.29 

OB-RPE 20.14 ± 8.77 6.14 ± 2.74 6.65 ± 4.21 6.59 ± 3.78 6.05 ± 3.57 

Overall 28.31 ± 22.05 20.17 ± 16.57 8.16 ± 3.28 6.31 ± 2.92 5.88 ± 2.38 

Table 2. Mean absolute boundary positioning differences (mean ± SD) calculated 
from the normal images in micrometers. 

Boundary 
OCT-Explorer 

[34,35] vs. 
Manual 

Chiu et al. [6] 
vs. Manual 

Long et al. 
[29] vs. 
Manual 

Roy et al. [24] 
vs. Manual 

Proposed 
FCN-MLS vs. 

Manual 

ILM 4.08 ± 0.57 3.65 ± 1.73 1.53 ± 3.68 1.54 ± 3.47 1.48 ± 3.66 

RNFL-GCL 6.47 ± 1.93 7.46 ± 9.41 9.42 ± 4.57 8.49 ± 3.41 6.02 ± 4.44 

GCL-IPL 8.20 ± 1.52 — 12.33 ± 5.27 7.88 ± 4.06 5.68 ± 3.50 

IPL-INL 6.66 ± 1.21 6.40 ± 3.51 14.28 ± 3.34 8.31 ± 3.52 5.39 ± 3.18 

INL-OPL 7.15 ± 1.24 6.70 ± 3.75 6.58 ± 2.31 5.79 ± 4.23 5.33 ± 3.47 

OPL-HFL 7.34 ± 1.11 4.77 ± 2.83 10.63 ± 3.57 5.82 ± 2.71 3.96 ± 2.40 

BMEIS 4.25 ± 0.55 4.16 ± 4.15 5.01 ± 3.98 5.37 ± 2.71 2.52 ± 3.68 

IB-OPR 12.53 ± 2.17 — 5.82 ± 4.35 5.77 ± 3.92 5.47 ± 2.06 

OB-RPE 8.13 ± 1.09 11.91 ± 6.33 5.69 ± 3.37 5.28 ± 2.79 5.16 ± 1.00 

Overall 7.20 ± 1.27 6.44 ± 4.53 7.92 ± 3.82 6.03 ± 3.12 5.59 ± 3.21 

 
As can be seen from Table 1 and Table 2, the overall mean absolute boundary position 
difference of the proposed method for the retinal images of normal and CSC lesions is 
5.88 ± 2.38 and 5.59 ± 3.21, respectively, which is significantly better than Chiu et al. [6], 
OCT-Explore [34,35], Long et al. [29] and Roy et al. [24]. For segmentation of OCT 
images with CSC lesions, the results produced by OCT-Explorer are inaccurate. Since the 
open method of the graph-based algorithm [6] does not divide the GCL-IPL, IB-OPR 
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boundary, the average absolute difference is expressed as “empty”. The segmentation 
effect of the single FCN network on the middle boundaries of the retinal layer is not 
ideal, and the segmentation effect of the boundaries with obvious gradient change is 
better than Chiu et al. [6] and OCT-Explorer [34,35] algorithms. For low-contrast OCT 
images, Roy et al. [24] have a slightly better segmentation effect than the FCN network. 
As can be seen from Table 1 and Table 2, the overall mean absolute boundary position 
difference of the proposed method for the retinal images of normal and CSC lesions is 
5.88 ± 2.38 and 5.59 ± 3.21, respectively, which is significantly better than Chiu et al. [6], 
OCT-Explore [34,35], Long et al. [29] and Roy et al. [24]. For segmentation of OCT 
images with CSC lesions, the results proposed by OCT-Explorer [34,35] are inaccurate. 
Since the open method of the graph-based algorithm [6] does not divide the GCL-IPL, 
IB-OPR boundary, the average absolute difference is expressed as “empty”. The 
segmentation effect of the single FCN network on the middle boundaries of the retinal 
layer is not ideal, and the segmentation effect of the boundaries with obvious gradient 
change is better than Chiu et al. [6] and OCT-Explorer [34,35] algorithms. For low-
contrast OCT images, Roy et al. [24] have a slightly better segmentation effect than the 
FCN network. But it still can't separate the IPL and INL layers very well. Our method 
first uses FCN to segment the boundaries with distinct gradient change, so that the 
specific boundaries have the best segmentation effect. The remaining boundaries are then 
located based on a priori knowledge of layer thickness and the classification result, which 
is more accurate. In the gradient-based level set evolution, the regional restriction 
technique is used to avoid overlap between interfaces, and the segmentation effect is also 
excellent. Therefore, the overall mean absolute boundary difference of our method and 
the mean absolute boundary difference of each boundary have the smallest error, i.e., the 
highest similarity to the ground-truth. 

3.1.2. Quantitative evaluation of retina thickness 

Since changes in fundus disease are mainly manifested in changes in the thickness of the 
retinal layer, reliable measurement of retinal thickness is critical to measuring the extent 
of changes in fundus diseases. We use the mean absolute thickness differences (mahd) 
metric proposed by Niu et al. [36] to estimate the layers difference between the 
segmentation methods. Calculate the thickness of each retinal layer by making use of the 
boundary positions of adjacent layers, which can be defined as: 

 1 2
i 1

1 1

512

N
i i
j jmahd l l

N =

 = − 
 

   (10) 

where N  is the width of each A-Scan, j  presents the thickness of each retinal layer, 

which is calculated by the boundary position of the adjacent layer and can be expressed 
as: 

 8 1
j 1

j j
b bI C C −

− = −  (11) 

where j  is the number of layers of the retina. 

Tables 3 and 4 show the results of the mean absolute boundary position difference and 
standard deviation of the retinal layer thickness compared to other methods. 
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Table 3. Mean absolute thickness differences (mean ± SD) calculated from the 
abnormal images with CSC in micrometers. 

Layer 
OCT-Explorer 

[34,35] vs. 
Manual 

Chiu et al. [6] 
vs. Manual 

Long et al. 
[29] vs. 
Manual 

Roy et al. [24] 
vs. Manual 

Proposed 
FCN-MLS vs. 

Manual 

RNFL 
25.63 ± 24.04 11.64 ± 9.21 5.61 ± 3.15 5.57 ± 2.72 5.53 ± 2.45 

GCL 
12.40 ± 7.15 — 13.60 ± 6.91 10.47 ± 4.78 8.87 ± 2.24 

IPL 
8.62 ± 2.76 — 12.36 ± 3.71 8.79 ± 1.68 8.37 ± 1.48 

INL 
8.02 ± 3.94 9.17 ± 3.24 8.24 ± 3.52 7.88 ± 4.07 7.38 ± 1.53 

OPL 
9.57 ± 4.49 12.50 ± 6.63 10.34 ± 4.36 8.14 ± 5.27 7.78 ± 2.59 

ONL 31.64 ± 37.62 54.25 + −39.94 20.85 ± 11.24 8.23 ± 4.51 6.03 ± 3.78 

CL1 
46.84 ± 43.94 — 7.75 ± 5.21 7.95 ± 5.41 7.25 ± 4.46 

CL2 
9.36 ± 2.50 — 7.08 ± 2.38 6.65 ± 1.31 6.73 ± 1.96 

Overall 19.01 ± 15.81 21.89 ± 14.76 9.54 ± 4.49 7.96 ± 3.04 5.81 ± 2.16 

Table 4. Mean absolute thickness differences (mean ± SD) calculated from the 
normal eye’s images in micrometers. 

Layer 
OCT-Explorer 

[34,35] vs. 
Manual 

Chiu et al. [6] 
vs. Manual 

Long et al. 
[29] vs. 
Manual 

Roy et al. [24] 
vs. Manual 

Proposed 
FCN-MLS vs. 

Manual 

RNFL 5.37 ± 1.88 8.74 ± 8.83 8.12 ± 2.29 5.31 ± 3.04 4.94 ± 5.52 

GCL 6.79 ± 1.56 — 9.15 ± 3.49 7.24 ± 4.01 6.42 ± 4.33 

IPL 6.93 ± 1.63 — 13.75 ± 6.35 7.37 ± 2.04 5.68 ± 2.41 

INL 5.97 ± 1.46 7.88 ± 1.76 15.71 ± 6.71 8.29 ± 4.36 4.62 ± 2.29 

OPL 4.56 ± 0.79 7.26 ± 1.49 8.34 ± 3.43 5.39 ± 1.02 3.25 ± 2.19 

ONL 5.41 ± 1.2 6.70 ± 4.02 7.68 ± 3.47 5.81 ± 3.28 4.68 ± 3.52 

CL1 9.71 ± 1.91 — 7.12 ± 3.45 6.88 ± 4.21 6.59 ± 3.91 

CL2 7.97 ± 1.5 — 6.97 ± 1.65 6.83 ± 2.37 6.80 ± 1.50 

Overall 6.59 ± 1.49 7.65 ± 4.03 7.76 ± 3.42 6.64 ± 3.04 4.78 ± 2.85 

 
It can be seen from the data in the Table 3 and Table 4, for retinal layer segmentation 

with CSC lesions, the overall mean absolute thickness difference of our method and the 
mean absolute thickness difference of each boundary were 5.81 ± 2.16, 4.78 ± 2.85, and 
the error was the smallest compared with manual segmentation. 

3.2. Qualitative evaluation 

Figure 7 shows the effect of the FCN network full classification and the effect of splitting 
only specific boundaries. It can be seen from the first row in the figure that if the full 
classification is adopted, the middle boundaries which are not obvious for the change of 
the gradient information cannot be accurately positioned, and the segmentation effect is 
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not ideal. The initialization process requires a lot of interpolation and fitting operations. 
Therefore, we use the FCN network to segment five critical boundaries with significant 
gradient changes. The second row shows that the classification effect is more accurate. 
Each column corresponds to the same B-scan, the first column represents the normal 
retinal image, the second and the third columns represent the retinal image with CSC 
lesions in the foveal region. 

It can be seen that since the gradient changes between specific boundaries are obvious 
and do not interfere with each other, the segmentation effect with less segmentation 
boundaries is more ideal. However, there is still a slight misclassification in the fovea 
area, so the fine segmentation of the next level set solves this problem. 

 

Fig. 7. The first row (a), (b), (c) are the result of the FCN network full classification; and 
the second row (d), (e), (f) are the result of the interface we need to be classified by the 
FCN network. 

In order to directly evaluate the quality of the segmentation process, Fig. 8 shows the 
cross-sectional images from the same cube which are segmented by four different 
methods. It can be seen from the figure that Chiu et al. [6] method based on graph theory 
has the worst segmentation effect, while OCT-Explore [34,35] is not very good at the 
upper boundary of CSC lesion. It is worth mentioning that the overall segmentation of the 
ReLayNet network proposed by Roy et al. [24] is not bad, but there is a phenomenon of 
overlap between the GCL-IPL and IPL-INL boundaries. Therefore, most of the deep 
learning networks we see do not divide this layer, because the average thickness of the 
IPL layer is too small, the gradient information changes are not obvious, and training on 
low-contrast OCT images is more difficult to distinguish. From this we can see that 
regional restriction is important. In addition, the IB-OPR boundary is not segmented by 
gradient. In contrast, our approach is more suitable for CSC lesion segmentation, the 
closest to manual segmentation. 
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Fig. 8. (a), (b), (c), (d),(e) are the comparisons among the method proposed by Chiu et al. 
[6], OCT-Explore [34,35], Roy et al. [24], our proposed method and manual segmentation 
result. 

Since layer segmentation is performed over the entire image area, we calculated a 2D 
position map (see Fig. 9) for each retinal boundary. The position of each layer boundary 
is given by the depth at the top of the cross-sectional image. The 2D position maps (e.g. 
Figure 9(a)-9(i)) of the ILM, RNFL-GCL, GCL-IPL, IPL-INL, INL-OPL, OPL-HFL, 
BMEIS, IB-OPR and OB-RPE boundaries, respectively. We subtract the position of the 
ILM boundary from the position of the RPE boundary to obtain the total retinal thickness 
map (see Fig. 9(j)), and the scale represents the distance between the two boundaries. 

 

Fig. 9. (a), (b), (c), (d), (e), (f), (g), (h), (i) are the boundary positions maps of a cube 
respectively; and (j) is the total thickness map. 

As we can see from Fig. 9, the color bar area on the right side of each figure 
represents the coordinate value 
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of the boundary. The deeper the yellow, the larger the value. Starting from the ILM 
boundary, the value of each next boundary is gradually increased. In addition, the value at 
the center of the position map is small, which indicates that the boundary around the 
fovea is correctly segmented. 

A cube represents a set of data for a patient, and we calculate a 3-D visualization of 
each boundary segmentation of the entire set of data shown in Fig. 10. The 3D 
visualization (e.g. Figure 10(a)-10(i)) of the segmentation results of 9 boundaries 
including ILM, RNFL-GCL, GCL-IPL, IPL-INL, INL-OPL, OPL-HFL, BMEIS, IB-OPR 
and OB-RPE, respectively. The 3-D visualization of the segmentation results of all 
boundaries (see Fig. 10(j)). 

It can be seen from Fig. 10(a)-10(i) that the coordinate value of the result graph of 
each 3-D visualization is getting lower and lower. This indicates that the position of the 
segmentation boundary in the OCT retinal image becomes lower and lower. In addition, 
Fig. 10(j) can clearly compare the positional relationship of all the segmented boundaries 
and can be seen that there is no overlap between the boundaries. 

 

Fig. 10. The 3-D surfaces visualization of a cube. 

4. Conclusion 

In this paper, a new joint automatic segmentation model of SD-OCT retinal layer and 
CSC lesion is proposed. The framework is based on FCN network and multi-stage level 
set method. Firstly, the retinal layers is roughly classified by FCN neural network as the 
initialization of the level set function. Based on the prior information of retinal image 
such as layer and thickness, the multi-stage level set method is used to realize the 
automatic segmentation of nine boundaries of OCT image. This model guarantees 
continuous boundaries of the retinal layer in all images and provides an efficient 
segmentation model for low-quality imaging with low contrast and blurred boundaries. 
Compared with the traditional level set method, the overlapping phenomenon of retinal 
layer boundary is avoided, and the need of large number of training data sets is 
effectively reduced compared with the simple use of neural network model. 
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